论文标题
DMFT揭示了厚处系统中的非热拓扑
DMFT reveals the non-Hermitian topology in heavy-fermion systems
论文作者
论文摘要
我们发现,通过使用非热拓扑理论,繁重的费米昂系统可以具有散装的“费米弧”。在相互作用的电子系统中,微观多体哈密顿量是隐性化的,但是由于有限的准粒子寿命,一体的准粒子汉密尔顿汉密尔顿人是非热的。我们将重点放在重型电子系统上,这是有两个寿命的有限寿命准颗粒的一个阶段,因为F-Electrons和C-Electrons的准粒子寿命应有所不同。在动量空间中,有两个生命值诱导非铁粒粒子哈密顿基质的特殊点(EPS)。在两个EP之间连接的线表征了大量的费米弧。通过使用动力学平均场理论(DMFT)计算,我们在二维中具有动量依赖性杂交的近托绝缘子的陈述。我们表明,非热式准粒子哈密顿量中的EPS的概念是预测强相关电子系统中新现象的强大工具之一。
We find that heavy fermion systems can have bulk "Fermi arcs", with the use of the non-Hermitian topological theory. In an interacting electron system, the microscopic many-body Hamiltonian is Hermitian, but the one-body quasiparticle Hamiltonian is non-Hermitian due to the finite quasiparticle lifetime. We focus on heavy electron systems as a stage of finite lifetime quasiparticles with two lifetimes, since quasiparticle lifetimes for f-electrons and c-electrons should be different. Two lifetimes induce exceptional points (EPs) of the non-Hermitian quasiparticle Hamiltonian matrix in momentum space. The line connecting between two EPs characterizes the bulk Fermi arcs. With the use of the dynamical mean field theory (DMFT) calculation, we confirm our statement in Kondo insulators with a momentum-dependent hybridization in two-dimensions. We show that the concept of the EPs in the non-Hermitian quasiparticle Hamiltonian is one of powerful tools to predict new phenomena in strongly correlated electron systems.