论文标题

基于傅立叶和沃斯坦的等效性在成像问题上

The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

论文作者

Auricchio, Gennaro, Codegoni, Andrea, Gualandi, Stefano, Toscani, Giuseppe, Veneroni, Marco

论文摘要

我们研究了一类基于傅立叶的概率指标的某些扩展的性能,该概率指标最初是为了研究与空间均质玻尔兹曼方程的均衡的融合。在与原始的不同,新的基于傅立叶的指标也是明确的,对于具有不同质量中心的概率分布,以及在常规网格上支持的离散概率度量。除其他属性外,还表明,在离散设置中,这些新的基于傅立叶的指标与Euclidean-Wasserstein距离$ W_2 $或Kantorovich-Wasserstein距离$ W_1 $等效,具有显而易见的常数。然后,数值结果表明,在图像处理的基准问题中,傅立叶指标可提供与瓦斯坦(Wasserstein)相对于瓦斯汀(Wasserstein)提供的更好的运行时间。

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures supported over a regular grid. Among other properties, it is shown that, in the discrete setting, these new Fourier-based metrics are equivalent either to the Euclidean-Wasserstein distance $W_2$, or to the Kantorovich-Wasserstein distance $W_1$, with explicit constants of equivalence. Numerical results then show that in benchmark problems of image processing, Fourier metrics provide a better runtime with respect to Wasserstein ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源