论文标题

3D面对抗螺旋形,并分解双线性编码

3D Face Anti-spoofing with Factorized Bilinear Coding

论文作者

Jia, Shan, Li, Xin, Hu, Chuanbo, Guo, Guodong, Xu, Zhengquan

论文摘要

近年来,我们目睹了面对表现攻击模型和演示攻击检测(PAD)的快速进步。与经过广泛研究的2D面对表现攻击相比,3D面对欺骗攻击更具挑战性,因为面部识别系统更容易被类似于真实面孔的材料的3D特征所混淆。在这项工作中,我们解决了检测这些现实的3D面对表现攻击的问题,并从细粒度分类的角度提出了一种新颖的反欺骗方法。我们的方法基于多种颜色通道的分解双线性编码(即MC \ _FBC),它的目标是学习真实图像和假图像之间细微的细粒度差异。通过从RGB和YCBCR空间中提取歧视性和融合的互补信息,我们开发了一种原则上的解决方案,以进行3D面欺骗检测。带有图像和视频的大型蜡像面数据库(WFFD)也被收集为超现实攻击,以促进研究3D面对呈现攻击检测的研究。广泛的实验结果表明,我们提出的方法在各种database和database测试方案下都可以在我们自己的WFFD和其他面部欺骗数据库上实现最先进的性能。

We have witnessed rapid advances in both face presentation attack models and presentation attack detection (PAD) in recent years. When compared with widely studied 2D face presentation attacks, 3D face spoofing attacks are more challenging because face recognition systems are more easily confused by the 3D characteristics of materials similar to real faces. In this work, we tackle the problem of detecting these realistic 3D face presentation attacks, and propose a novel anti-spoofing method from the perspective of fine-grained classification. Our method, based on factorized bilinear coding of multiple color channels (namely MC\_FBC), targets at learning subtle fine-grained differences between real and fake images. By extracting discriminative and fusing complementary information from RGB and YCbCr spaces, we have developed a principled solution to 3D face spoofing detection. A large-scale wax figure face database (WFFD) with both images and videos has also been collected as super-realistic attacks to facilitate the study of 3D face presentation attack detection. Extensive experimental results show that our proposed method achieves the state-of-the-art performance on both our own WFFD and other face spoofing databases under various intra-database and inter-database testing scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源