论文标题
通过监督的机器学习,基于协调的资源分配
Coordinates-based Resource Allocation Through Supervised Machine Learning
论文作者
论文摘要
适当的系统资源分配对于满足下一代无线技术中用户交通需求的增加至关重要。传统上,该系统依靠用户的渠道状态信息(CSI)来优化资源分配,这对于快速变化的渠道条件而成本高昂。考虑到未来的无线技术将基于密集的网络部署,其中移动终端处于发射机的视线状态,因此终端的位置信息为估计渠道条件提供了替代方案。在这项工作中,我们建议使用监督的机器学习技术提出一种基于坐标的资源分配方案,并研究该方案与在各种传播条件下的传统方法相比的有效性。我们将设置的简单系统视为第一步,其中单个发射器为单个移动用户提供服务。性能结果表明,即使终端的可用坐标是错误的,基于坐标的资源分配方案也可以达到非常接近基于CSI的方案的性能。所提出的方案在现实系统的模拟中表现良好,仅需要4秒钟的训练时间,并且在少于90微秒的小于90微秒的情况下预测了适当的资源分配,其尺寸小于1 kb的模型。
Appropriate allocation of system resources is essential for meeting the increased user-traffic demands in the next generation wireless technologies. Traditionally, the system relies on channel state information (CSI) of the users for optimizing the resource allocation, which becomes costly for fast-varying channel conditions. Considering that future wireless technologies will be based on dense network deployment, where the mobile terminals are in line-of-sight of the transmitters, the position information of terminals provides an alternative to estimate the channel condition. In this work, we propose a coordinates-based resource allocation scheme using supervised machine learning techniques, and investigate how efficiently this scheme performs in comparison to the traditional approach under various propagation conditions. We consider a simplistic system set up as a first step, where a single transmitter serves a single mobile user. The performance results show that the coordinates-based resource allocation scheme achieves a performance very close to the CSI-based scheme, even when the available coordinates of terminals are erroneous. The proposed scheme performs consistently well with realistic-system simulation, requiring only 4 s of training time, and the appropriate resource allocation is predicted in less than 90 microseconds with a learnt model of size less than 1 kB.