论文标题
ODVICE:用于交互式队列提取的本体驱动的视觉分析工具
ODVICE: An Ontology-Driven Visual Analytic Tool for Interactive Cohort Extraction
论文作者
论文摘要
电子健康记录(EHR)的可用性增加使研究人员能够研究各种医学问题。研究假设的队列选择是EHR分析的主要考虑因素之一。对于不常见的疾病,从EHR中提取的同类群体包含非常有限的记录 - 阻碍了任何分析的鲁棒性。数据增强方法已成功地应用于其他域中,主要使用模拟记录来解决此问题。在本文中,我们提出了ODVICE,这是一个数据增强框架,该框架利用医学概念的本体论使用新型的本体学指导的蒙特卡罗图形图跨越算法来系统地增强记录。该工具允许最终用户指定一小部分交互式控件以控制增强过程。我们通过对两个学习任务进行模拟III数据集进行研究来分析ODVICE的重要性。我们的结果表明,ODVICE增强队列的预测性能,表明曲线(AUC)面积(AUC)比非夸大数据集和其他数据增强策略提高了约30%。
Increased availability of electronic health records (EHR) has enabled researchers to study various medical questions. Cohort selection for the hypothesis under investigation is one of the main consideration for EHR analysis. For uncommon diseases, cohorts extracted from EHRs contain very limited number of records - hampering the robustness of any analysis. Data augmentation methods have been successfully applied in other domains to address this issue mainly using simulated records. In this paper, we present ODVICE, a data augmentation framework that leverages the medical concept ontology to systematically augment records using a novel ontologically guided Monte-Carlo graph spanning algorithm. The tool allows end users to specify a small set of interactive controls to control the augmentation process. We analyze the importance of ODVICE by conducting studies on MIMIC-III dataset for two learning tasks. Our results demonstrate the predictive performance of ODVICE augmented cohorts, showing ~30% improvement in area under the curve (AUC) over the non-augmented dataset and other data augmentation strategies.