论文标题

在非保守形式下线性双曲系统的增强分辨率

Augmented resolution of linear hyperbolic systems under nonconservative form

论文作者

Navas-Montilla, Adrián, Özgen-Xian, Ilhan

论文摘要

非保守形式下的双曲系统在对物理过程进行建模的许多应用中都出现,例如,从放松更通用方程式(例如,用耗散术语)。本文回顾了现有的一类增强ROE方案,并讨论了其在具有源术语的线性非保守双曲线系统中的应用。我们通过在使用源术语的几何重新解释的通用框架中重新定义现有的增强方法来扩展现有的增强方法。这会导致内在平衡的数值离散化。我们讨论了两种等效的表述:(1)一种非保守方法和(2)对问题的保守重新重新制定。检查了方案的平衡特性,并提供了保存均衡性质的条件。提出了线性声学和双曲热方程的瞬态和稳态测试用例。提出并用于评估方案的平衡特性,并用于评估方案中不连续性的瞬时和稳定情况,包括瞬态和稳定情况。结果表明,所提出的方案满足了预期的平衡和收敛性。

Hyperbolic systems under nonconservative form arise in numerous applications modeling physical processes, for example from the relaxation of more general equations (e.g. with dissipative terms). This paper reviews an existing class of augmented Roe schemes and discusses their application to linear nonconservative hyperbolic systems with source terms. We extend existing augmented methods by redefining them within a common framework which uses a geometric reinterpretation of source terms. This results in intrinsically well-balanced numerical discretizations. We discuss two equivalent formulations: (1) a nonconservative approach and (2) a conservative reformulation of the problem. The equilibrium properties of the schemes are examined and the conditions for the preservation of the well-balanced property are provided. Transient and steady state test cases for linear acoustics and hyperbolic heat equations are presented. A complete set of benchmark problems with analytical solution, including transient and steady situations with discontinuities in the medium properties, are presented and used to assess the equilibrium properties of the schemes. It is shown that the proposed schemes satisfy the expected equilibrium and convergence properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源