论文标题

通过扫描基于物理的神经网络的扫描特定微调加速了高保真的MRI重建

High-Fidelity Accelerated MRI Reconstruction by Scan-Specific Fine-Tuning of Physics-Based Neural Networks

论文作者

Hosseini, Seyed Amir Hossein, Yaman, Burhaneddin, Moeller, Steen, Akçakaya, Mehmet

论文摘要

长期扫描持续时间仍然是高分辨率MRI的挑战。通过提供直接从数据中学到的数据驱动的正规化器,深度学习已成为加速MRI重建的强大手段。这些数据驱动的先验通常在训练过程中学习后在测试阶段中以未来的数据保持不变。在这项研究中,我们建议使用转移学习方法使用自学方法对新主题进行微调。尽管所提出的方法可能会损害深度学习MRI方法的极快重建时间,但我们对膝盖MRI的结果表明,这种适应性可以大大减少重建图像中的剩余伪影。此外,所提出的方法有可能减少对罕见病理状况的概括风险,这在训练数据中可能不可用。

Long scan duration remains a challenge for high-resolution MRI. Deep learning has emerged as a powerful means for accelerated MRI reconstruction by providing data-driven regularizers that are directly learned from data. These data-driven priors typically remain unchanged for future data in the testing phase once they are learned during training. In this study, we propose to use a transfer learning approach to fine-tune these regularizers for new subjects using a self-supervision approach. While the proposed approach can compromise the extremely fast reconstruction time of deep learning MRI methods, our results on knee MRI indicate that such adaptation can substantially reduce the remaining artifacts in reconstructed images. In addition, the proposed approach has the potential to reduce the risks of generalization to rare pathological conditions, which may be unavailable in the training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源