论文标题

Quiver表示中的刚性模块和冰封的子类别

Rigid modules and ICE-closed subcategories in quiver representations

论文作者

Enomoto, Haruhisa

论文摘要

我们介绍了模块类别的图像 - 凯尔诺尔扩张(冰封闭)子类别。该类统一了扭转类和广泛的子类别。我们表明,在Dynkin类型的路径代数上锁定的子类别与基本的刚性模块进行了两者的培养,而冰断的子类别在某些宽的子类别中精确地是扭转类,并且该数字不取决于Quiver的方向。我们给出了每个Dynkin类型的这个数字的明确公式,尤其是它等于A型案例的大schröder编号。

We introduce image-cokernel-extension-closed (ICE-closed) subcategories of module categories. This class unifies both torsion classes and wide subcategories. We show that ICE-closed subcategories over the path algebra of Dynkin type are in bijection with basic rigid modules, that ICE-closed subcategories are precisely torsion classes in some wide subcategories, and that the number does not depend on the orientation of the quiver. We give an explicit formula of this number for each Dynkin type, and in particular, it is equal to the large Schröder number for type A case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源