论文标题

具有易错暴露的生存模型的两阶段分析和研究设计

Two-phase analysis and study design for survival models with error-prone exposures

论文作者

Han, Kyunghee, Lumley, Thomas, Shepherd, Bryan E., Shaw, Pamela A.

论文摘要

医学研究越来越多地取决于用于非研究目的的数据,例如电子健康记录数据(EHR)。 EHR数据和其他大型数据库可能容易导致关键暴露的测量误差,并且对易错数据的未调整分析可能会偏向研究结果。验证记录的子集是获取错误结构信息的一种经济有效的方法,而这些信息又可以用于调整此错误并改善推理的分析。我们扩展了离散时间生存模型的两阶段分析的平均得分方法,该模型使用未验证的协变量作为辅助变量,可作为未观察到的真实暴露的替代。该方法依赖于两阶段采样设计和估计方法,该方法保留了已验证的子集中完整的病例回归参数估计值的一致性,并且从辅助数据中掌握了精度。此外,我们制定了最佳抽样策略,从而最大程度地减少了在固定成本限制下目标曝光的平均得分估计器的方差。我们考虑最佳设计需要内部飞行员的设置,以便将第二阶段样本分为飞行员和自适应最佳样本。通过模拟和数据示例,我们使用派生的最佳验证设计来评估平均得分估计量的效率提高,并与第二阶段样本平衡且简单的随机采样相比。我们还从经验上探索了效率提高,在连续时间生存结果的情况下,提出的离散最佳设计可以为COX比例危害模型提供。

Increasingly, medical research is dependent on data collected for non-research purposes, such as electronic health records data (EHR). EHR data and other large databases can be prone to measurement error in key exposures, and unadjusted analyses of error-prone data can bias study results. Validating a subset of records is a cost-effective way of gaining information on the error structure, which in turn can be used to adjust analyses for this error and improve inference. We extend the mean score method for the two-phase analysis of discrete-time survival models, which uses the unvalidated covariates as auxiliary variables that act as surrogates for the unobserved true exposures. This method relies on a two-phase sampling design and an estimation approach that preserves the consistency of complete case regression parameter estimates in the validated subset, with increased precision leveraged from the auxiliary data. Furthermore, we develop optimal sampling strategies which minimize the variance of the mean score estimator for a target exposure under a fixed cost constraint. We consider the setting where an internal pilot is necessary for the optimal design so that the phase two sample is split into a pilot and an adaptive optimal sample. Through simulations and data example, we evaluate efficiency gains of the mean score estimator using the derived optimal validation design compared to balanced and simple random sampling for the phase two sample. We also empirically explore efficiency gains that the proposed discrete optimal design can provide for the Cox proportional hazards model in the setting of a continuous-time survival outcome.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源