论文标题
Euler-Bernoulli梁的适应性和指数衰减,以非恒定速度和动态边界条件输送流体方程
Well-posedness and exponential decay for the Euler-Bernoulli beam conveying fluid equation with non-constant velocity and dynamical boundary conditions
论文作者
论文摘要
在本文中,我们考虑了带有时间变化的内部流体的Euler-Bernoulli光束方程。我们假设流体正在以非恒定速度移动,并且满足了动态边界条件。我们证明了在梁的张力和问题参数的适当假设下,全局解决方案的存在和唯一性。之后,我们通过引入合适的Lyapunov功能来建立解决方案的指数稳定性。
In this paper, we consider an Euler-Bernoulli beam equation with time-varying internal fluid. We assume that the fluid is moving with non-constant velocity and dynamical boundary conditions are satisfied. We prove the existence and uniqueness of global solution under suitable assumptions on the tension of beam and on the parameters of the problem. Afterwards, we establish the exponential stability of the solution by introducing a suitable Lyapunov functional.