论文标题

连续波微孔原子时钟中的高级轻换手补偿协议

Advanced light-shift compensation protocol in a continuous-wave microcell atomic clock

论文作者

Hafiz, M. Abdel, Vicarini, R., Passilly, N., Calosso, C. E., Maurice, V., Pollock, J. W., Taichenachev, A. V., Yudin, V. I., Kitching, J., Boudot, R.

论文摘要

众所周知,轻移是对不同类型的原子钟的中期和长期分数频率稳定性的重要限制。在本文中,我们证明了基于相干种群捕获(CPT)的连续波(CW)微电器原子时钟上先进的反灯偏移询问方案的实验实现。该方法的灵感来自于脉冲原子时钟中所示的自动平衡的拉姆西(ABR)光谱技术,其中包括从两个连续的轻偏钟频率中提取基于原子的信息。从沿对称序列获取的信号的线性组合计算出的两个错误信号以双环配置进行管理,以生成无轻移的时钟频率。使用此方法,与正常操作相比,时钟频率对激光功率和微波功率变化的敏感性可以降低超过一个数量级。在本实验中,对非线性轻换依赖性的考虑可以增强减轻轻换压。实施的技术可以明确改善时钟的时钟偏差,以使时间尺度高于1000 s。该方法可以在各种原子钟中应用,例如基于CPT的原子钟,双共振RB时钟或细胞稳定激光器。

Light-shifts are known to be an important limitation to the mid- and long-term fractional frequency stability of different types of atomic clocks. In this article, we demonstrate the experimental implementation of an advanced anti-light shift interrogation protocol onto a continuous-wave (CW) microcell atomic clock based on coherent population trapping (CPT). The method, inspired by the Auto-Balanced Ramsey (ABR) spectroscopy technique demonstrated in pulsed atomic clocks, consists in the extraction of atomic-based information from two successive light-shifted clock frequencies obtained at two different laser power values. Two error signals, computed from the linear combination of signals acquired along a symmetric sequence, are managed in a dual-loop configuration to generate a clock frequency free from light-shift. Using this method, the sensitivity of the clock frequency to both laser power and microwave power variations can be reduced by more than an order of magnitude compared to normal operation. In the present experiment, the consideration of the non-linear light-shift dependence allowed to enhance light-shift mitigation. The implemented technique allows a clear improvement of the clock Allan deviation for time scales higher than 1000 s. This method could be applied in various kinds of atomic clocks such as CPT-based atomic clocks, double-resonance Rb clocks, or cell-stabilized lasers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源