论文标题

分散的,保存隐私的贝叶斯推断手机联系跟踪

Decentralised, privacy-preserving Bayesian inference for mobile phone contact tracing

论文作者

Tang, Daniel

论文摘要

目前,许多国家正在准备使用智能手机应用程序来执行接触跟踪,以此作为管理Covid-19-19大流行并防止初次​​爆发后疾病复苏的努力的一部分。随着Apple/Google合作伙伴关系宣布向iOS和Android引入接触追踪功能,似乎在许多国家中都会采用这种功能。该应用程序功能的重要组成部分是决定是否应建议一个人进行自我隔离,测试或结束隔离。但是,Apple/Google联系人跟踪算法的隐私性保留性质意味着无法对这些决策进行集中策划,因此每个手机都必须使用自己的“风险模型”来为决策提供信息。理想情况下,鉴于用户和其他用户的测试结果,风险模型应使用贝叶斯推断来决定最佳的行动方案。在这里,我们提出了一种分散的算法,该算法估算病毒传输事件的贝叶斯后验概率,并评估何时应在保留用户隐私的同时将用户何时通知,测试或从隔离中释放。该算法还允许手机上的疾病模型从每个人的接触追踪数据中学习,并使流行病学家可以更好地理解疾病的动力学。该算法是基于信念传播的消息传递算法的消息,因此每个智能手机都可以用于执行算法的一小部分而无需释放任何敏感信息。通过这种方式,所有参与的智能手机的网络形成了执行贝叶斯推理的分布式计算设备,在每个用户应启动/结束隔离或进行测试时通知每个用户,并从用户的数据中了解疾病。

Many countries are currently gearing up to use smart-phone apps to perform contact tracing as part of the effort to manage the COVID-19 pandemic and prevent resurgences of the disease after the initial outbreak. With the announcement of the Apple/Google partnership to introduce contact-tracing functionality to iOS and Android, it seems likely that this will be adopted in many countries. An important part of the functionality of the app will be to decide whether a person should be advised to self-isolate, be tested or end isolation. However, the privacy preserving nature of the Apple/Google contact tracing algorithm means that centralised curation of these decisions is not possible so each phone must use its own "risk model" to inform decisions. Ideally, the risk model should use Bayesian inference to decide the best course of action given the test results of the user and those of other users. Here we present a decentralised algorithm that estimates the Bayesian posterior probability of viral transmission events and evaluates when a user should be notified, tested or released from isolation while preserving user privacy. The algorithm also allows the disease models on the phones to learn from everyone's contact-tracing data and will allow Epidemiologists to better understand the dynamics of the disease. The algorithm is a message passing algorithm, based on belief propagation, so each smart-phone can be used to execute a small part of the algorithm without releasing any sensitive information. In this way, the network of all participating smart-phones forms a distributed computation device that performs Bayesian inference, informs each user when they should start/end isolation or be tested and learns about the disease from user's data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源