论文标题

从主要听觉皮层中的$μ$ -ECOG的低级非线性解码

Low-Rank Nonlinear Decoding of $μ$-ECoG from the Primary Auditory Cortex

论文作者

Emami, Melikasadat, Sahraee-Ardakan, Mojtaba, Pandit, Parthe, Fletcher, Alyson K., Rangan, Sundeep, Trumpis, Michael, Bent, Brinnae, Chiang, Chia-Han, Viventi, Jonathan

论文摘要

本文考虑了来自平行神经测量系统(例如微皮质摄影($μ$ -ECOG))的神经解码问题。在以非常高的采样速率的阵列元素的系统中,原始测量数据的尺寸可能很大。为此高维数据学习神经解码器可能具有挑战性,尤其是当训练样本的数量有限时。为了应对这一挑战,这项工作提出了一个新颖的神经网络解码器,在第一层隐藏层中具有低级结构。低级别的约束大大减少了解码器中参数的数量,同时仍可以启用一类丰富的非线性解码器映射。从$ $ $ -ECOG数据中说明了从醒着大鼠的主要听觉皮层(A1)上的$μ$ ECOG数据中进行说明。由于听觉皮层中神经反应的复杂性以及在清醒动物中存在混杂的信号,因此这个解码问题尤其具有挑战性。结果表明,所提出的低级解码器使用标准维度降低技术(例如主成分分析(PCA))显着优于模型。

This paper considers the problem of neural decoding from parallel neural measurements systems such as micro-electrocorticography ($μ$-ECoG). In systems with large numbers of array elements at very high sampling rates, the dimension of the raw measurement data may be large. Learning neural decoders for this high-dimensional data can be challenging, particularly when the number of training samples is limited. To address this challenge, this work presents a novel neural network decoder with a low-rank structure in the first hidden layer. The low-rank constraints dramatically reduce the number of parameters in the decoder while still enabling a rich class of nonlinear decoder maps. The low-rank decoder is illustrated on $μ$-ECoG data from the primary auditory cortex (A1) of awake rats. This decoding problem is particularly challenging due to the complexity of neural responses in the auditory cortex and the presence of confounding signals in awake animals. It is shown that the proposed low-rank decoder significantly outperforms models using standard dimensionality reduction techniques such as principal component analysis (PCA).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源