论文标题

使用机器学习间的电位探索二维材料的语音特性

Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials

论文作者

Mortazavi, Bohayra, Novikov, Ivan S., Podryabinkin, Evgeny V., Roche, Stephan, Rabczuk, Timon, Shapeev, Alexander V., Zhuang, Xiaoying

论文摘要

通过使用密度函数理论(DFT)模拟来计算力常数来研究语音特性。尽管DFT模拟提供了对声子分散关系或热性能的准确估计,但是对于低对称性和纳米多孔结构,计算成本迅速越来越苛刻。此外,计算设置可能会在声子分散曲线中产生非物理假想频率,从而阻碍评估声音性能和所考虑系统的动力学稳定性。在这里,我们计算声子分散关系,并检查大量新型材料和组成的动态稳定性。我们提出了DFT模拟的快速且方便的替代方案,该替代方法是根据在计算高效的AB-Initio分子动力学轨迹上被动训练的机器学习间潜能。我们对各种二维(2D)纳米材料的结果证实,所提出的计算策略可以与通过DFT方法获得的基本热性质重现基本的热性能。提出的方法提供了一种稳定,高效且方便的解决方案,用于检查动态稳定性并探索低对称性和多孔2D材料的语音性能。

Phononic properties are commonly studied by calculating force constants using the density functional theory (DFT) simulations. Although DFT simulations offer accurate estimations of phonon dispersion relations or thermal properties, but for low-symmetry and nanoporous structures the computational cost quickly becomes very demanding. Moreover, the computational setups may yield nonphysical imaginary frequencies in the phonon dispersion curves, impeding the assessment of phononic properties and the dynamical stability of the considered system. Here, we compute phonon dispersion relations and examine the dynamical stability of a large ensemble of novel materials and compositions. We propose a fast and convenient alternative to DFT simulations which derived from machine-learning interatomic potentials passively trained over computationally efficient ab-initio molecular dynamics trajectories. Our results for diverse two-dimensional (2D) nanomaterials confirm that the proposed computational strategy can reproduce fundamental thermal properties in close agreement with those obtained via the DFT approach. The presented method offers a stable, efficient, and convenient solution for the examination of dynamical stability and exploring the phononic properties of low-symmetry and porous 2D materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源