论文标题
连续混合自回旋网络,以有效地计算多体系统
Continuous-mixture Autoregressive Networks for efficient variational calculation of many-body systems
论文作者
论文摘要
我们开发具有多个通道的深度自回旋网络,以直接使用\ emph {连续}自由度的自由度来计算多体系统。作为一个具体的示例,我们将二维XY模型嵌入连续混合网络中,并重新发现了Kosterlitz- thouless(KT)相变于周期性的正方形晶格。自回归神经网络准确检测到了准长范围顺序的涡旋。通过从宏观热分布中学习微观概率分布,神经网络直接计算自由能,并发现自由涡流和抗涡流在高温方向上出现。作为更精确的评估,我们计算螺旋模量以确定KT过渡温度。尽管训练过程变得更加耗时,较大的晶格尺寸,但训练时间在KT过渡温度周围保持不变。因此,我们开发的连续混合自回旋网络可能被潜在地用于研究具有连续自由度的其他多体系统。
We develop deep autoregressive networks with multi channels to compute many-body systems with \emph{continuous} spin degrees of freedom directly. As a concrete example, we embed the two-dimensional XY model into the continuous-mixture networks and rediscover the Kosterlitz-Thouless (KT) phase transition on a periodic square lattice. Vortices characterizing the quasi-long range order are accurately detected by the autoregressive neural networks. By learning the microscopic probability distributions from the macroscopic thermal distribution, the neural networks compute the free energy directly and find that free vortices and anti-vortices emerge in the high-temperature regime. As a more precise evaluation, we compute the helicity modulus to determine the KT transition temperature. Although the training process becomes more time-consuming with larger lattice sizes, the training time remains unchanged around the KT transition temperature. The continuous-mixture autoregressive networks we developed thus can be potentially used to study other many-body systems with continuous degrees of freedom.