论文标题
使用分段深神经网络解决椭圆界面问题的无网格方法
A Mesh-free Method Using Piecewise Deep Neural Network for Elliptic Interface Problems
论文作者
论文摘要
在本文中,我们提出了一种新颖的无网格数值方法,用于解决基于深度学习的椭圆界面问题。我们通过神经网络近似解决方案,并且由于解决方案可能在界面上发生巨大变化,因此我们在不同的子域中采用了不同的神经网络。通过将界面问题重新定义为最小二乘问题,我们通过采样均方根误差来离散目标函数,并通过标准训练算法(例如随机梯度下降)解决提出的深度最小二乘法。离散的目标函数仅利用采样点上的点信息,因此不需要潜在的网格。这样做可以避免具有挑战性的网格划分程序以及复杂界面上的数值集成。为了提高更具挑战性问题的计算效率,我们根据最小二乘功能的残差进一步设计了一种自适应抽样策略,并提出了一种自适应算法。最后,我们在2D和3D中介绍了几个数值实验,以显示提出的解决界面问题的深度最小二乘方法的灵活性,有效性和准确性。
In this paper, we propose a novel mesh-free numerical method for solving the elliptic interface problems based on deep learning. We approximate the solution by the neural networks and, since the solution may change dramatically across the interface, we employ different neural networks in different sub-domains. By reformulating the interface problem as a least-squares problem, we discretize the objective function using mean squared error via sampling and solve the proposed deep least-squares method by standard training algorithms such as stochastic gradient descent. The discretized objective function utilizes only the point-wise information on the sampling points and thus no underlying mesh is required. Doing this circumvents the challenging meshing procedure as well as the numerical integration on the complex interface. To improve the computational efficiency for more challenging problems, we further design an adaptive sampling strategy based on the residual of the least-squares function and propose an adaptive algorithm. Finally, we present several numerical experiments in both 2D and 3D to show the flexibility, effectiveness, and accuracy of the proposed deep least-square method for solving interface problems.