论文标题
eftoflss的红移空间中有偏见的示踪剂,并具有精确的时间依赖性
Biased Tracers in Redshift Space in the EFTofLSS with exact time dependence
论文作者
论文摘要
我们研究了爱因斯坦(Einstein-de Sitter)(EDS)近似值对大型结构有效田间理论中红移空间中星系中的单环功率谱的影响。暗物质密度扰动和速度差异以精确的时间依赖性处理。将密度扰动分解为不同的时间演变,自然会产生偏见的不可还原基础。尽管在ED近似中,在此基础上,每个时间都跨越了一个七维空间,但该空间略有不同,并且差异由单个可计算的时间 - 和$ \ vec k $依赖性函数捕获。然后,我们使用EDS近似值($ p^{\ text {eds-approx}} $)计算红移空间一环功率谱,而没有($ p^{\ text {extcect {extcript}}} $)。对于单子,我们找到$ p _ {\ text {0}}^{\ text {extcect}}/p _ {\ text {0}}^{\ text {\ text {eds-approx}}}} \ sim 1.003 $ and quadrupole $ p _ {\ text {2}}^{\ text {extcect}}/p _ {\ text {2}}}^{\ text {eds-approx}} \ sim 1.007 $ at $ z = 0.57 $,并在较低的红shifts处急剧增加。最后,我们表明,即使允许偏置系数在物理允许的范围内移动之后,效果的很大一部分仍然存在。这表明ED近似只能将数据拟合到与下一代宇宙学调查的精度大致相当的精度。此外,我们发现实施确切的时间依赖形式主义不是要求,并且很容易适用于数据。这两个点都激发了对这种对宇宙学参数的影响的直接研究。
We study the effect of the Einstein - de Sitter (EdS) approximation on the one-loop power spectrum of galaxies in redshift space in the Effective Field Theory of Large-Scale Structure. The dark matter density perturbations and velocity divergence are treated with exact time dependence. Splitting the density perturbation into its different temporal evolutions naturally gives rise to an irreducible basis of biases. While, as in the EdS approximation, at each time this basis spans a seven-dimensional space, this space is a slightly different one, and the difference is captured by a single calculable time- and $\vec k$-dependent function. We then compute the redshift-space galaxy one-loop power spectrum with the EdS approximation ($P^{\text{EdS-approx}}$) and without ($P^{\text{Exact}}$). For the monopole we find $P_{\text{0}}^{\text{Exact}}/P_{\text{0}}^{\text{EdS-approx}}\sim 1.003$ and for the quadrupole $P_{\text{2}}^{\text{Exact}}/P_{\text{2}}^{\text{EdS-approx}}\sim 1.007$ at $z=0.57$, and sharply increasing at lower redshifts. Finally, we show that a substantial fraction of the effect remains even after allowing the bias coefficients to shift within a physically allowed range. This suggests that the EdS approximation can only fit the data to a level of precision that is roughly comparable to the precision of the next generation of cosmological surveys. Furthermore, we find that implementing the exact time dependence formalism is not demanding and is easily applicable to data. Both of these points motivate a direct study of this effect on the cosmological parameters.