论文标题

Dirac-Einstein气泡的某些特性

Some properties of Dirac-Einstein bubbles

论文作者

Borrelli, William, Maalaoui, Ali

论文摘要

我们证明了平滑度,并在$ \ mathbb {r}^3 $上提供了Dirac-Einstein方程解决方案的无穷大行为,这些差异出现在Spin 3-manifolds上的共形Dirac-Einstein方程的起泡分析中。此外,我们对基态解决方案进行了分类,证明标量部分是由Aubin-Talenti函数给出的,而旋转部分是$ - \ frac {1} {2} $的共形图像 - 在圆形Sphere $ \ Mathbb {s} s}^3 $上杀死旋转旋转器。

We prove smoothness and provide the asymptotic behavior at infinity of solutions of Dirac-Einstein equations on $\mathbb{R}^3$, which appear in the bubbling analysis of conformal Dirac-Einstein equations on spin 3-manifolds. Moreover, we classify ground state solutions, proving that the scalar part is given by Aubin-Talenti functions, while the spinorial part is the conformal image of $-\frac{1}{2}$-Killing spinors on the round sphere $\mathbb{S}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源