论文标题

智能反射表面辅助的毫米波模拟系统的频道估计

Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave MIMO Systems

论文作者

Lin, Tian, Yu, Xianghao, Zhu, Yu, Schober, Robert

论文摘要

智能反射表面(IRS)被认为是未来毫米波(MMWave)无线通信的有前途的推动者,因为它们能够创建有利的视线(LOS)传播环境。在本文中,我们研究了下行链路IRS辅助MMWAVE多输入多输出(MIMO)系统中的通道估计。通过利用MMWave通道的稀疏性,我们将通道估计问题提出为固定级限制的非凸优化问题。为了解决非跨性别性,通过利用交替的最小化和多种歧视优化(MO)提出了有效的算法,该算法得出了局部最佳的解决方案。仿真结果表明,提出的基于MO的估计(MO-EST)算法显着胜过两个基准方案,并证明了MO-最新算法在实际实现中通道的稀疏水平方面的鲁棒性。

Intelligent reflecting surfaces (IRSs) are regarded as promising enablers for future millimeter wave (mmWave) wireless communication, due to their ability to create favorable line-of-sight (LoS) propagation environments. In this paper, we investigate channel estimation in downlink IRS-assisted mmWave multiple-input multiple-output (MIMO) systems. By leveraging the sparsity of mmWave channels, we formulate the channel estimation problem as a fixed-rank constrained non-convex optimization problem. To tackle the non-convexity, an efficient algorithm is proposed by capitalizing on alternating minimization and manifold optimization (MO), which yields a locally optimal solution. Simulation results show that the proposed MO-based estimation (MO-EST) algorithm significantly outperforms two benchmark schemes and demonstrate the robustness of the MO-EST algorithm with respect to imperfect knowledge of the sparsity level of the channels in practical implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源