论文标题
光滑的通量表,拓扑绕组模式
Smooth flux-sheets with topological winding modes
论文作者
论文摘要
高斯 - 曲面项包含在大部分Polyakov-Kleinert弦乐中,这是由高斯 - 桥网定理提供的新边界条款和条件。在领先的近似值中,平滑世界表的特征模特和开放式刚性字符串的气体的自由能在拓扑术语中以二阶的二阶变化。与拓扑$θ$项相比,高斯 - 骨网术语被引入有效的动作中,并具有复杂的耦合以实现签名的能量转移。我们根据拓扑引起的移位研究了临界点附近两个静态颜色源之间的刚性颜色通量表。 Yang-Mills晶格数据与静态Quark-Antiquark $ Q \ bar {q} $的潜力与弦电位进行了比较。蒙特 - 卡洛数据对应于$β= 6.0 $的SU(3)量规配置的链接集成的Polyakov-loop相关器。拟合行为的显着改善显示在非驱动源分离距离$ 0.2 $ fm至$ 1.0 $ fm上。值得注意的是,拟合式术语的返回耦合参数表现出与量子数的比例。这些发现表明,明显的模式是字符串世界表格上拓扑粒子的绕组数。
The inclusion of the Gaussian-curvature term in the bulk of Polyakov-Kleinert string action renders new boundary terms and conditions by Gauss-Bonnet theorem. Within a leading approximation, the eigenmodes of smooth worldsheets and the free-energy of a gas of open rigid strings appears to be altered at second order in the coupling by the topological term . In analogy to the topological $θ$ term, the Gauss-Bonnet term is introduced into the effective action with a complex coupling to implement signed energy shifts. We investigate the rigid color flux-sheets between two static color sources near the critical point in the light of the topologically induced shifts. The Yang-Mills lattice data of the potential of static quark-antiquark $Q\bar{Q}$ in a heatbath is compared to the string potential. The Monte-Carlo data correspond to link-integrated Polyakov-loop correlators averaged over SU(3) gauge configurations at $β=6.0$. Substantial improvement in the fit behavior is displayed over the nonperturbative source separation distance $0.2$ fm to $1.0$ fm. Remarkably, the returned coupling parameter of the topological term from the fit exhibits a proportionality to a quantum number. These findings suggest that the manifested modes are the winding number of a topological particle on the string's worldsheet.