论文标题

变分聚类:利用变异自动编码器用于图像群集

Variational Clustering: Leveraging Variational Autoencoders for Image Clustering

论文作者

Prasad, Vignesh, Das, Dipanjan, Bhowmick, Brojeshwar

论文摘要

深度学习的最新进展表明他们能够学习图像的强大特征表示。图像聚类的任务自然需要良好的特征表示,以捕获数据的分布,然后将数据点彼此区分。通常,这两个方面是独立处理的,因此仅传统特征学习在有意义地对数据进行分区不足。各种自动编码器(VAE)自然可以在潜在空间中学习数据分布。由于我们希望有效区分数据中的不同簇,因此我们提出了一种基于VAE的方法,在该方法中,我们在帮助准确地群集图像之前使用高斯混合物。我们共同学习先验和后分布的参数。我们的方法代表真正的高斯混合物。这样,我们的方法同时学习了一个先验,该方法可以捕获图像的潜在分布和后部,以帮助隔离数据点之间。我们还提出了由离散变量和连续变量的混合物组成的潜在空间的新型修复。一个关键的要点是,与现有方法不同,我们的方法在不使用任何预训练或学习的模型的情况下可以更好地概括在不同的数据集中,这使其可以以端到端的方式从头开始培训。我们通过在各种数据集上的无监督方法中实现最新结果来验证我们的功效和概括性。据我们所知,我们是第一个在真实图像数据集上以纯监督方式使用VAE进行图像聚类的人。

Recent advances in deep learning have shown their ability to learn strong feature representations for images. The task of image clustering naturally requires good feature representations to capture the distribution of the data and subsequently differentiate data points from one another. Often these two aspects are dealt with independently and thus traditional feature learning alone does not suffice in partitioning the data meaningfully. Variational Autoencoders (VAEs) naturally lend themselves to learning data distributions in a latent space. Since we wish to efficiently discriminate between different clusters in the data, we propose a method based on VAEs where we use a Gaussian Mixture prior to help cluster the images accurately. We jointly learn the parameters of both the prior and the posterior distributions. Our method represents a true Gaussian Mixture VAE. This way, our method simultaneously learns a prior that captures the latent distribution of the images and a posterior to help discriminate well between data points. We also propose a novel reparametrization of the latent space consisting of a mixture of discrete and continuous variables. One key takeaway is that our method generalizes better across different datasets without using any pre-training or learnt models, unlike existing methods, allowing it to be trained from scratch in an end-to-end manner. We verify our efficacy and generalizability experimentally by achieving state-of-the-art results among unsupervised methods on a variety of datasets. To the best of our knowledge, we are the first to pursue image clustering using VAEs in a purely unsupervised manner on real image datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源