论文标题

时间O(1)中的内存特征向量计算

In-memory eigenvector computation in time O(1)

论文作者

Sun, Zhong, Pedretti, Giacomo, Ambrosi, Elia, Bricalli, Alessandro, Ielmini, Daniele

论文摘要

具有跨点电阻内存阵列的内存计算已引起了极大的关注,以加速以数据为中心应用程序计算的矩阵矢量乘法。通过结合跨点阵列和反馈放大器,可以在一个步骤中计算矩阵特征向量,而无需算法迭代。在这项工作中,根据跨点电路的反馈分析研究了特征向量计算的时间复杂性。结果表明,电路的计算时间取决于电路中实现的特征值的不匹配度,该特征值控制输出电压的上升速度。对于随机矩阵的数据集,计算电路中主要特征向量的时间是各种矩阵大小的恒定时间,即时间复杂度为o(1)。 O(1)时间复杂性也由现实世界数据集的PageRank的模拟支持。这项工作为快速,节能加速器的特征向量计算铺平了道路。

In-memory computing with crosspoint resistive memory arrays has gained enormous attention to accelerate the matrix-vector multiplication in the computation of data-centric applications. By combining a crosspoint array and feedback amplifiers, it is possible to compute matrix eigenvectors in one step without algorithmic iterations. In this work, time complexity of the eigenvector computation is investigated, based on the feedback analysis of the crosspoint circuit. The results show that the computing time of the circuit is determined by the mismatch degree of the eigenvalues implemented in the circuit, which controls the rising speed of output voltages. For a dataset of random matrices, the time for computing the dominant eigenvector in the circuit is constant for various matrix sizes, namely the time complexity is O(1). The O(1) time complexity is also supported by simulations of PageRank of real-world datasets. This work paves the way for fast, energy-efficient accelerators for eigenvector computation in a wide range of practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源