论文标题
自由空间光学通信的智能反射表面
Intelligent Reflecting Surfaces for Free Space Optical Communications
论文作者
论文摘要
在本文中,我们研究了使用智能反射表面(IRS)的使用,以放宽自由空间光学(FSO)系统的视线需求。考虑到高斯激光束,我们首先在IRS上设计一个相移分布,从而使入射光束的反射沿任何所需的方向进行反射,即实现一般的反射定律。此外,对于设计的相移剖面,我们表明存在一个等效的镜像辅助FSO系统,该系统在镜像上生成反射的电场,该电场与原始系统中的IRS相同。但是,在原始系统和等效系统中,激光源的位置和发射高斯激光束的性能不同。这种等效性使我们能够从几何光学器件中使用镜像辅助系统,而不是直接分析原始IRS辅助系统。基于此分析,我们对几何和未对准损失(GML)进行建模,并表征IRS物理参数的影响,例如其大小,位置和方向对端到端FSO通道。此外,我们为GML开发了一个统计模型,该模型解释了由于构建摇摆而导致的IRS,发射器(TX)和接收器(RX)的随机运动。此外,我们根据派生的通道模型分析了IRS辅助FSO链接的中断概率。我们的仿真结果验证了开发的通道模型的准确性,并为系统设计提供了各种见解。例如,我们的模拟和理论分析都表明,即使由建筑物摇摆引起的TX,IRS和RX位置的波动的变化是相同的,它们对端到端通道的影响不一定是相同的,并且取决于这三个节点的相对位置。
In this paper, we investigate the use of intelligent reflecting surfaces (IRSs) to relax the line-of-sight requirement of free space optical (FSO) systems. Considering a Gaussian laser beam, we first design a phase-shift distribution across the IRS that enables the reflection of the incident beam in any desired direction, i.e., realizing the generalized law of reflection. Moreover, for the designed phase-shift profile, we show that there exists an equivalent mirror-assisted FSO system that generates a reflected electric field on a mirror that is identical to that on the IRS in the original system. However, the location of the laser source and the properties of the emitted Gaussian laser beam are different in the original and the equivalent systems. This equivalence allows us to study the mirror-assisted system, employing the image method from geometric optics, instead of directly analyzing the original IRS-assisted system. Based on this analysis, we model the geometric and misalignment losses (GML) and characterize the impact of the physical parameters of the IRS, such as its size, position, and orientation, on the end-to-end FSO channel. Moreover, we develop a statistical model for the GML which accounts for the random movements of IRS, transmitter (Tx), and receiver (Rx) due to building sway. Furthermore, we analyze the outage probability of an IRS-assisted FSO link based on the derived channel model. Our simulation results validate the accuracy of the developed channel model and offer various insights for system design. For instance, both our simulations and theoretical analysis reveal that even if the variances of the fluctuations of the Tx, IRS, and Rx positions caused by building sway are identical, their impact on the end-to-end channel is not necessarily the same and depends on the relative positioning of these three nodes.