论文标题

Hahn类型的双相合理函数的双光谱性的代数描述

An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type

论文作者

Tsujimoto, Satoshi, Vinet, Luc, Zhedanov, Alexei

论文摘要

$ {_ 3} f_2 $在均匀网格上键入的生物三相合理函数提供了具有双光谱属性的最简单示例,具有与经典正交多发元相似的双光谱属性。这些属性由三个差异运算符$ x,y,z $描述,这些属性相对于相关有限维空间的三个不同的基础是三个不同的。运算符的成对换向器$ x,y,z $产生一个二次代数,类似于超几何多项式上的Askey-Wilson型代数。

The biorthogonal rational functions of the ${_3}F_2$ type on the uniform grid provide the simplest example of rational functions with bispectrality properties that are similar to those of classical orthogonal polynomials. These properties are described by three difference operators $X,Y,Z$ which are tridiagonal with respect to three distinct bases of the relevant finite-dimensional space. The pairwise commutators of the operators $X,Y,Z$ generate a quadratic algebra which is akin to the algebras of Askey-Wilson type attached to hypergeometric polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源