论文标题

高分辨率射电天文学成像上的近乎记忆加速

Near Memory Acceleration on High Resolution Radio Astronomy Imaging

论文作者

Corda, Stefano, Veenboer, Bram, Awan, Ahsan Javed, Kumar, Akash, Jordans, Roel, Corporaal, Henk

论文摘要

平方公里阵列(SKA)之类的现代射电望远镜将需要实时处理无线电 - 媒介物信号,以构建天空的高分辨率地图。由于最先进的放射媒体成像算法中的频繁记忆访问,近序列计算(NMC)可以减轻性能瓶颈。在本文中,我们表明,执行二维快速傅立叶变换(2D FFT)的子模块使用IBM Power上的CPI分解分析结合了内存9。然后,我们在2D FFT上提出了FPGA上的NMC方法,该方法的表现胜过120倍的CPU,并且使用较少的带宽和内存,并与高端GPU相当地执行。

Modern radio telescopes like the Square Kilometer Array (SKA) will need to process in real-time exabytes of radio-astronomical signals to construct a high-resolution map of the sky. Near-Memory Computing (NMC) could alleviate the performance bottlenecks due to frequent memory accesses in a state-of-the-art radio-astronomy imaging algorithm. In this paper, we show that a sub-module performing a two-dimensional fast Fourier transform (2D FFT) is memory bound using CPI breakdown analysis on IBM Power9. Then, we present an NMC approach on FPGA for 2D FFT that outperforms a CPU by up to a factor of 120x and performs comparably to a high-end GPU, while using less bandwidth and memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源