论文标题

$ f(\ Mathscr {r},\ Mathscr {g})$重力满足Karmarkar条件的物理可行解决方案

Physically viable solutions of anisotropic spheres in $f(\mathscr{R},\mathscr{G})$ gravity satisfying the Karmarkar condition

论文作者

Mustafa, G., Shamir, M. Farasat, Tie-Cheng, Xia

论文摘要

本文专门讨论$ f(\ mathscr {r},\ mathscr {g})$ gravity中的紧凑型星,其中$ \ mathscr {r} $和$ \ mathscr {g} $分别表示ricci scalar和ricci scalar和高斯 - 骨网的态度。为了实现这一目标,我们考虑具有各向异性流体分布的球形对称时空。特别是,Karmarkar条件用于探索紧凑型星溶液。此外,我们选择了两个紧凑型星的特定模型,即LMC X-4(质量= 1.29 $ m/m _ {\ odot} $ \&radii = 9.711 km)和EXO 1785-248(质量= 1.30 $ m/m _ {\ odot} $ \&radii = 8.849 km)。我们通过采用Karmarkar条件,并使用Lake [Phys [Phys Phys]在文献中已经报道的特定模型来开发$ f(\ mathscr {r},\ Mathscr {g})$重力的场方程。 Rev. D 67,104015(2003)]。我们进一步考虑用于边界处的匹配条件的Schwarzschild几何形状。在这里重要的是,我们通过施加匹配条件来计算所有涉及参数的值。我们提供了详细的图形分析,以讨论参数的物理可接受性,即能量密度,压力,各向异性和梯度。我们还通过探索恒星的稳定性,通过探索能量条件,状态方程,广义的tolman-oppenheimer-volkoff方程,因果关系条件和绝热指数。为了进行当前分析,我们预测了中央重力度量函数,中央密度和中央压力组件的表格形式的一些数值。我们还计算了比率$ p_ {rc}/ρ_{c} $检​​查Zeldovich条件的有效性。结论性地,发现我们获得的解决方案在$ f(\ Mathscr {r},\ Mathscr {g})中的物理上具有良好的性质,\ Mathscr {g})$修改的重力,用于讨论中的紧凑型星模型。

This paper is devoted to discuss compact stars in $f(\mathscr{R},\mathscr{G})$ gravity, where $\mathscr{R}$ and $\mathscr{G}$ denote the Ricci scalar and Gauss-Bonnet invariant respectively. To meet this aim, we consider spherically symmetric space-time with anisotropic fluid distribution. In particular, the Karmarkar condition is used to explore the compact star solutions. Further, we choose two specific model of compact stars namely LMC X-4 (mass =1.29$M/M_{\odot}$ \& radii=9.711 km) and EXO 1785-248 (mass =1.30$M/M_{\odot}$ \& radii=8.849 km). We develop the field equations for $f(\mathscr{R},\mathscr{G})$ gravity by employing the Karmarkar condition with a specific model already reported in literature by Lake [Phys. Rev. D 67, 104015 (2003)]. We further consider the Schwarzschild geometry for matching conditions at the boundary. It is important to mention here that we calculate the values of all the involved parameter by imposing the matching condition. We have provided a detailed graphical analysis to discuss the physical acceptability of parameters, i.e., energy density, pressure, anisotropy, and gradients. We have also examined the stability of compacts stars by exploring the energy conditions, equation of state, generalized Tolman-Oppenheimer-Volkoff equation, causality condition, and adiabatic index. For present analysis, we predict some numerical values in tabular form for central gravitational metric functions, central density and central pressures components. We have also calculated the ratio $p_{rc}/ ρ_{c}$ to check the validity of Zeldovich's condition. Conclusively, it is found that our obtained solutions are physically viable with well-behaved nature in $f(\mathscr{R},\mathscr{G})$ modified gravity for the compact star models under discussion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源