论文标题
钴线之间的超薄铁磁性层状纳米结构的sublattice磁化
Sublattice magnetizations of ultrathin ferrimagnetic lamellar nanostructures between cobalt leads
论文作者
论文摘要
在这项工作中,我们模拟了合金层状磁磁性纳米结构的显着磁性特性$ [co_ {1-c} gd_c] _ {\ ell^{\ prime}} [co _ \ ell [co_ ell [co_ {1-c} gd_c} gd_c} gd_c} gd_c] _ {我们已经采用了Ising旋转有效场理论(EFT)来计算纯钴$ J_ {Co-Co} $和Gadolinium $ J_ {GD-GD} $材料的可靠磁交换常数,并完全同意其实验数据。 $ CO $和$ GD $站点在单个HCP Atomic(0001)平面上的Sublattice磁化量通过使用组合的EFT和平均场理论(MFT)旋转方法计算了$ co-GD $ lopered纳米结构的$ co-GD $分层纳米结构。嵌入式纳米结构的单个HCP原子平面的sublatice磁化,有效的位点磁矩和铁磁补偿特性是根据温度的函数计算的,并且在$ c \ leq $ 0.5范围内的各种稳定的Eutectic浓度。 sublatice磁化的理论结果以及这些超薄铁磁性层状纳米结构系统的局部磁化变量,钴铅之间的理论结果,对于研究其宏伟的传输特性以及最终其Spintronic动态计算是必要的。这项工作中开发的方法是一般的,可以应用于与其他材料一起使用的可比磁系统纳米结构。
In this work we model the salient magnetic properties of the alloy lamellar ferrimagnetic nanostructures $[Co_{1-c}Gd_c]_{\ell^{\prime}}[Co]_\ell[Co_{1-c}Gd_c]_{\ell^{\prime}}$ between $Co$ semi-infinite leads. We have employed the Ising spin effective field theory (EFT) to compute the reliable magnetic exchange constants for the pure cobalt $J_{Co-Co}$ and gadolinium $J_{Gd-Gd}$ materials, in complete agreement with their experimental data. The sublattice magnetizations of the $Co$ and $Gd$ sites on the individual hcp atomic (0001) planes of the $Co-Gd$ layered nanostructures are computed for each plane and corresponding sites, by using the combined EFT and mean field theory (MFT) spin methods. The sublattice magnetizations, effective site magnetic moments, and ferrimagnetic compensation characteristics for the individual hcp atomic planes of the embedded nanostructures, are computed as a function of temperature, and for various stable eutectic concentrations in the range $c\leq$ 0.5. The theoretical results for the sublattice magnetizations and the local magnetic variables of these ultrathin ferrimagnetic lamellar nanostructured systems, between cobalt leads, are necessary for the study of their magnonic transport properties, and eventually their spintronic dynamic computations. The method developed in this work is general and can be applied to comparable magnetic systems nanostructured with other materials.