论文标题

Liénard系统通过接触式哈密顿方法的几何数字整合

Geometric numerical integration of Liénard systems via a contact Hamiltonian approach

论文作者

Zadra, Federico, Bravetti, Alessandro, Seri, Marcello

论文摘要

从接触汉密尔顿的liénard系统描述开始,我们为这些非线性动力学系统介绍了一个新的显式几何积分器家族。着眼于范德波旋振荡器的范式示例,我们证明了这些集成剂特别稳定,并保留了动力学的定性特征,即使对于相对较大的时间步长和僵硬的态度的值也是如此。

Starting from a contact Hamiltonian description of Liénard systems, we introduce a new family of explicit geometric integrators for these nonlinear dynamical systems. Focusing on the paradigmatic example of the van der Pol oscillator, we demonstrate that these integrators are particularly stable and preserve the qualitative features of the dynamics, even for relatively large values of the time step and in the stiff regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源