论文标题
由微波电压驱动的纳米级自旋喷油器
Nanoscale Spin Injector Driven by a Microwave Voltage
论文作者
论文摘要
我们将电动自旋注射器提出到正常金属和半导体中,该注射器基于经受微波电压的磁性隧道连接(MTJ)。 MTJ的“游离”层中电诱导的磁化进液提供了这种喷油器的有效功能,该磁力化的磁力化液会产生旋转泵入金属或半导体叠加仪。我们从理论上描述了COFEB/MGO/COFEB/AU(GAAS)异质结构中的自旋和电荷动力学。首先,用自旋转移扭矩和电压控制的磁各向异性来定量游离COFEB层中的大侏罗氏动力。通过数值求解磁力动力学方程,我们确定进动幅度对频率$ f $和幅度$ v_ \ mathrm {max} $的依赖性,用于MTJ。发现频率依赖性在阈值幅度$ v_ \ mathrm {max} \大约200 $ mV上发生了巨大变化,在共振频率$ f_ \ mathrm {res} $由于非线性效果时表现出突破。磁化动力学获得的结果用于描述自旋注入并泵入AU和GAAS叠加仪。由于生成的自旋电流由于反旋转厅效应而产生额外的电荷电流,因此我们还计算了厚AU叠加仪中电势的分布。计算表明,在$ f = f_ \ mathrm {res} $的情况下,出现的横向电压在实验上可以测量。最后,我们评估了与MTJ耦合的长n $^+$ -GAAS条中的自旋积累,并确定其时间变化和沿条形的空间分布。发现在谐振激发下的自旋积累也足够大,即使在距MTJ的微米距离处,也可以进行实验检测。该结果表明所描述的纳米级自旋注射器的效率很高。
We propose an electrically driven spin injector into normal metals and semiconductors, which is based on a magnetic tunnel junction (MTJ) subjected to a microwave voltage. Efficient functioning of such an injector is provided by electrically induced magnetization precession in the "free" layer of MTJ, which generates the spin pumping into a metallic or semiconducting overlayer. We theoretically describe the spin and charge dynamics in the CoFeB/MgO/CoFeB/Au(GaAs) heterostructures. First, the magnedynamics in the free CoFeB layer is quantified with the account of a spin-transfer torque and a voltage-controlled magnetic anisotropy. By numerically solving the magnetodynamics equation, we determine dependences of the precession amplitude on the frequency $f$ and magnitude $V_\mathrm{max}$ of the ac voltage applied to the MTJ. It is found that the frequency dependence changes drastically above the threshold amplitude $V_\mathrm{max} \approx 200$mV, exhibiting a break at the resonance frequency $f_\mathrm{res}$ due to nonlinear effects. The results obtained for the magnetization dynamics are used to describe the spin injection and pumping into the Au and GaAs overlayers. Since the generated spin current creates additional charge current owing to the inverse spin Hall effect, we also calculate distribution of the electric potential in the thick Au overlayer. The calculations show that the arising transverse voltage becomes experimentally measurable at $f = f_\mathrm{res}$. Finally, we evaluate the spin accumulation in a long n$^+$-GaAs bar coupled to the MTJ and determine its temporal variation and spatial distribution along the bar. It is found that the spin accumulation under resonant excitation is large enough for experimental detection even at micrometer distances from the MTJ. This result demonstrates high efficiency of the described nanoscale spin injector.