论文标题
复杂的真实$α-$ bernstein-durrmeyer操作员的近似属性
Approximation properties of complex genuine $α-$Bernstein-Durrmeyer operators
论文作者
论文摘要
本文中,我们提出了一种真正的伯恩斯坦 - 德尔梅尔类型运算符的复杂形式,具体取决于非负实际参数$α。$我们呈现了定量上限,voronovskaja类型的结果,以及这些操作员的近似值以及与Compact Disks附加到分析功能的衍生物的近似值。这些结果验证了复杂的真实$α-$α-$ bernstein-durrmeyer型运算符的近似特性的扩展,从实际间隔中延伸到复杂平面中的紧凑型磁盘。
Herein we propose a complex form of a genuine Bernstein-Durrmeyer type operators depending on a non-negative real parameter $α.$ We present the quantitative upper bound, Voronovskaja type result and exact order of approximation for these operators and for their derivatives attached to analytic functions on compact disks. These results validate the extension of approximation properties of complex genuine $α-$Bernstein-Durrmeyer type operators from real intervals to compact disks in the complex plane.