论文标题

在一维随机步行中明显的超级巴利克动力学与偏见

Apparent superballistic dynamics in one-dimensional random walks with biased detachment

论文作者

Korosec, Chapin S., Sivak, David A., Forde, Nancy R.

论文摘要

平均位移(MSD)是广泛用于评估异常扩散的平均数量。在许多情况下,例如具有有限加工性的分子电动机,感兴趣系统的动力学会产生不同持续时间的轨迹。在这里,我们探讨了有限加工对MSD不同度量的影响。我们通过研究一个看似简单的动力学系统来做到这一点:具有原始指向的分离偏置的一维随机步行(具有等距的跳跃长度,对称的移动概率和恒定的步骤持续时间)。通过调整分离偏差的时间依赖性,我们通过分析计算和轨迹模拟发现系统可以表现出广泛的异常扩散,从而超越了传统的扩散到超级扩散甚至超级球运动。我们在分析上确定具有延时脱离的协议会导致及时的合奏平均速度增加,从而提供了将系统推到弹道阈值上方所需的有效加速度。 MSD分析对燃烧桥的棘轮类似地揭示了超级巴利克的行为。由于超级散发性MSD通常用于推断有偏见的运动状动力学,因此这些发现为动态解释提供了一个警示性的故事。

The mean-squared displacement (MSD) is an averaged quantity widely used to assess anomalous diffusion. In many cases, such as molecular motors with finite processivity, dynamics of the system of interest produce trajectories of varying duration. Here we explore the effects of finite processivity on different measures of the MSD. We do so by investigating a deceptively simple dynamical system: a one-dimensional random walk (with equidistant jump lengths, symmetric move probabilities, and constant step duration) with an origin-directed detachment bias. By tuning the time dependence of the detachment bias, we find through analytical calculations and trajectory simulations that the system can exhibit a broad range of anomalous diffusion, extending beyond conventional diffusion to superdiffusion and even superballistic motion. We analytically determine that protocols with a time-increasing detachment lead to an ensemble-averaged velocity increasing in time, thereby providing the effective acceleration that is required to push the system above the ballistic threshold. MSD analysis of burnt-bridges ratchets similarly reveals superballistic behavior. Because superdiffusive MSDs are often used to infer biased, motor-like dynamics, these findings provide a cautionary tale for dynamical interpretation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源