论文标题
物理信息的神经网络,用于超声破裂裂纹的超声无损定量
Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
论文作者
论文摘要
我们引入了一个优化的物理信息神经网络(PINN),该神经网络(PINN)训练了识别和表征金属板中表面断裂的问题。 PINN是神经网络,可以通过将部分微分方程系统的残差添加到损失函数中,从而在学习过程中结合数据和物理。我们的Pinn受到以5 MHz频率获取的逼真的超声表面声波数据进行监督。使用激光振动法测量,超声表面波数据表示为金属板顶部表面上的表面变形。 PINN通过声波方程式在物理上告知,其收敛性使用自适应激活函数加速。自适应激活函数在激活函数中使用可伸缩的超参数,该功能被优化以实现网络的最佳性能,因为它动态地更改了优化过程中涉及的损耗函数的拓扑。适应性激活功能的使用显着提高了收敛性,在当前研究中特别观察到。我们使用PINN来估计金属板的声音速度,我们以1 \%的误差进行操作,然后通过允许声音速度取决于空间,我们将裂纹识别并表征裂纹作为声音速度降低的位置。我们的研究还显示了数据的子采样对音速估计的灵敏度的影响。从更广泛的角度来看,结果模型显示了一个有希望的深层神经网络模型,用于逆问题。
We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems.