论文标题

在带有协变量和随机响应的回归模型中,可靠的位置估计器

Robust location estimators in regression models with covariates and responses missing at random

论文作者

Bianco, Ana M., Boente, Graciela, González-Manteiga, Wenceslao, Pérez-González, Ana

论文摘要

本文在响应中以及某些协变量中丢失数据时处理了一般回归模型下的强大边缘估计。目标是边缘位置参数,该参数是通过$ m $函数给出的。为了获得强大的Fisher(一致估计器),考虑了正确定义的边缘分布函数估计器。这些估计器通过假设在随机条件下缺失而避免由于缺失值而产生偏差。考虑了三种方法来估算边际分布函数,该函数允许获得$ m $感兴趣的位置:众所周知的反相反概率加权,一种基于卷积的方法,可利用回归模型和增强的逆概率加权程序,以防止不明显。在不同缺失的模型(包括清洁和受污染的样品)下,通过一项数值研究比较了强大的估计量和经典的估计量。我们说明了非线性模型下的估计量行为。还分析了真实的数据集。

This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some of covariates. The target is a marginal location parameter which is given through an $M-$functional. To obtain robust Fisher--consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values by assuming a missing at random condition. Three methods are considered to estimate the marginal distribution function which allows to obtain the $M-$location of interest: the well-known inverse probability weighting, a convolution--based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. The robust proposed estimators and the classical ones are compared through a numerical study under different missing models including clean and contaminated samples. We illustrate the estimators behaviour under a nonlinear model. A real data set is also analysed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源