论文标题
使用语义分割在木薯中得分根坏死
Scoring Root Necrosis in Cassava Using Semantic Segmentation
论文作者
论文摘要
木薯在非洲许多地方是主要的粮食作物,主要受到木薯棕色条纹疾病(CBSD)的影响。该疾病会影响块茎根部,并出现症状,其中包括黄色/棕色,含淀粉的组织内的干燥,可毛坏死。木薯育种者目前依靠视觉检查来基于定性评分,在根基上得分坏死。在本文中,我们提出了一种使用具有语义分割的深卷积神经网络自动化根坏死评分的方法。我们的实验表明,UNET模型以高精度执行此任务,在测试集上实现了平均值(IOU)为0.90的平均值。该方法提供了一种使用定量措施对根横截面上的坏死评分的方法。这是通过分割和对木薯根横截面的坏死和非杀伤性像素进行分割和非其他功能工程的分类来完成的。
Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering.