论文标题
Lambek微积分的分类矢量空间语义具有相关方式
Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality
论文作者
论文摘要
我们为Lambek微积分开发了一种具有相关模式!L*的分类构图分布语义,该语义具有限量版的收缩和排列规则。语义的分类部分是一个具有山结构模态的单体双膜类别,与差分类别的结构非常相似。我们将此类别实例化,以通过“定量”函数来实现有限的维矢量空间和线性图,并与煤层模式的三种具体解释一起工作。我们将模型应用于构建分类和具体的语义解释!通过使用BERT,Word2Vec和FastText载体和关系张量,通过放弃歧义数据集将句子放在歧义数据集到寄生差距短语上,通过放弃歧义数据集进行了混凝土解释的有效性。
We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors.