论文标题
使用模式拟合模式拟合的偏心schwarzschild schwarzschild Extreme-Mas-Mas-Mas-Ratio Insirals在无穷大的角度和能量通量中确定新系数和能量通量
Determination of new coefficients in the angular momentum and energy fluxes at infinity to 9PN for eccentric Schwarzschild extreme-mass-ratio inspirals using mode-by-mode fitting
论文作者
论文摘要
我们在较早的论文中介绍了作品的扩展,该论文显示了黑洞扰动理论与牛顿后(PN)理论之间在其重叠有效性的区域中对绑定,怪异轨道,schwarzschild schwarzschild极限质量比率灵感的区域。与之前一样,我们应用了数值拟合方案,以在重力波通量的PN膨胀中提取偏心系数,然后使用整数关联算法将其转换为精确的分析形式。但是,在这项工作中,我们适合单个$ LMN $模式来利用其中存在的简化因素化。由于以前的论文仅关注能量通量,因此我们最初集中于分析角动量通量到无穷大。第一步涉及寻找以低PN顺序对通量贡献的方便形式,类似于以前为能量通量而制定的类似术语。然后,我们应用升级的技术通过9PN订单找到新的PN术语,(在许多PN订单中)在偏心率的Power系列中(在许多PN订单)中找到$ e^{30} $。随着新方法应用于角动量通量,我们返回到无穷大的能量通量,以扩大先前的结果。与以前一样,基础方法使用Mano-Suzuki-Takasugi(MST)功能扩展形式形式使用\ textsc {Mathematica}代码来表示引力扰动和光谱源集成(SSI)以在任意高精确性的任意高精确度中找到数值结果。
We present an extension of work in an earlier paper showing high precision comparisons between black hole perturbation theory and post-Newtonian (PN) theory in their region of overlapping validity for bound, eccentric-orbit, Schwarzschild extreme-mass-ratio inspirals. As before we apply a numerical fitting scheme to extract eccentricity coefficients in the PN expansion of the gravitational wave fluxes, which are then converted to exact analytic form using an integer-relation algorithm. In this work, however, we fit to individual $lmn$ modes to exploit simplifying factorizations that lie therein. Since the previous paper focused solely on the energy flux, here we concentrate initially on analyzing the angular momentum flux to infinity. A first step involves finding convenient forms for hereditary contributions to the flux at low-PN order, analogous to similar terms worked out previously for the energy flux. We then apply the upgraded techniques to find new PN terms through 9PN order and (at many PN orders) to $e^{30}$ in the power series in eccentricity. With the new approach applied to angular momentum fluxes, we return to the energy fluxes at infinity to extend those previous results. Like before, the underlying method uses a \textsc{Mathematica} code based on use of the Mano-Suzuki-Takasugi (MST) function expansion formalism to represent gravitational perturbations and spectral source integration (SSI) to find numerical results at arbitrarily high precision.