论文标题
页面曲线和扁平空间中的信息悖论
Page Curve and the Information Paradox in Flat Space
论文作者
论文摘要
渐近因果钻石(ACD)是ADS因果楔的天然平坦空间类似物,并且以前有人争辩说,它们可能对理解平面全息图中的散装位置可能有用。在本文中,我们使用受ACD启发的想法来争辩说,存在量子极端表面(QES)的天然候选者和平面空间中的纠缠楔,并固定在保形边界上。当有限半径处有全息屏幕时,我们还可以将纠缠楔和熵与屏幕区域相关联,系统自然耦合到水槽。屏幕和边界提供了配制信息悖论的两种互补方法。我们解释了它们的相关性,并表明在这两种配方中,平坦的纠缠楔在页面时间在蒸发的Schwarzschild Black Hole的背景下进行了相变。我们的结果与广告中的最新观察结果紧密相似,并重现页面曲线。可以在不依赖广告的情况下直接在平坦的空间中直接措辞的论点变化,这是一个有力的迹象表明,纠缠楔相跃迁可能也是扁平空间中信息悖论的关键。一路上,我们提供证据表明,ACD的纠缠熵是一个明确的且可能具有启发性的数量。我们进一步指出,我们在这里提供的水槽的图片可能会在大型$ n $设置中的子矩阵解料方面有所了解。
Asymptotic Causal Diamonds (ACDs) are a natural flat space analogue of AdS causal wedges, and it has been argued previously that they may be useful for understanding bulk locality in flat space holography. In this paper, we use ACD-inspired ideas to argue that there exist natural candidates for Quantum Extremal Surfaces (QES) and entanglement wedges in flat space, anchored to the conformal boundary. When there is a holographic screen at finite radius, we can also associate entanglement wedges and entropies to screen sub-regions, with the system naturally coupled to a sink. The screen and the boundary provide two complementary ways of formulating the information paradox. We explain how they are related and show that in both formulations, the flat space entanglement wedge undergoes a phase transition at the Page time in the background of an evaporating Schwarzschild black hole. Our results closely parallel recent observations in AdS, and reproduce the Page curve. That there is a variation of the argument that can be phrased directly in flat space without reliance on AdS, is a strong indication that entanglement wedge phase transitions may be key to the information paradox in flat space as well. Along the way, we give evidence that the entanglement entropy of an ACD is a well-defined, and likely instructive, quantity. We further note that the picture of the sink we present here may have an understanding in terms of sub-matrix deconfinement in a large-$N$ setting.