论文标题
从洛莫诺索夫引理到联合光谱半径理论的自由基方法
From Lomonosov Lemma to Radical Approach in Joint Spectral Radius Theory
论文作者
论文摘要
在本文中,我们讨论了著名的Berger-Wang定理(广义Berger-Wang公式)的无限维概括,并给出了与这些公式有关的三个基本关节光谱半径的巧合的操作者理论证明。此外,我们基于拓扑自由基理论开发了Banach-Elgebraic方法,并获得了有关这些激进分子的一些新结果。
In this paper we discuss the infinite-dimensional generalizations of the famous theorem of Berger-Wang (generalized Berger-Wang formulas) and give an operator-theoretic proof of I. Morris's theorem about coincidence of three essential joint spectral radius, related to these formulas. Further we develop Banach-algebraic approach based on the theory of topological radicals, and obtain some new results about these radicals.