论文标题
$ s $ -matrix的冗余杆,用于一维摩尔斯电位
Redundant poles of the $S$-matrix for the one dimensional Morse potential
论文作者
论文摘要
我们分析了一维摩尔斯电位的散射矩阵的结构,$ s(k)$。我们表明,除了有限数量的绑定状态极和无限数量的抗固定杆外,还有无限数量的冗余极数,在正想象轴上与其他任何一种类型都不相对。这可以通过分析和准确地解决。此外,我们获得了将它们连接的所有这些极点和梯子操作员的波浪函数。冗余状态极线的波函数通过两个不同的系列连接。我们还研究一些例外情况。
We analyze the structure of the scattering matrix, $S(k)$, for the one dimensional Morse potential. We show that, in addition to a finite number of bound state poles and an infinite number of anti-bound poles, there exist an infinite number of redundant poles, on the positive imaginary axis, which do not correspond to either of the other types. This can be solved analytically and exactly. In addition, we obtain wave functions for all these poles and ladder operators connecting them. Wave functions for redundant state poles are connected via two different series. We also study some exceptional cases.