论文标题
$ b_k $旋转顶点模型和量子代数
$B_k$ Spin Vertex Models and Quantum Algebras
论文作者
论文摘要
我们基于Lie代数$ B_K $的旋转表示形式构建新的可溶剂顶点模型。我们使用这些模型来研究此类顶点理论的基础代数结构。我们表明,所有$ b_k $ spin顶点模型都遵守了宝马代数的版本,以及额外的关系,称为$ n $ -cb(共形编织)代数。在面部模型周围的各种IRF(相互作用)之前,对这些代数进行了讨论。在这里,我们确定顶点模型的代数相同。
We construct new solvable vertex models based on the spin representation of the Lie algebra $B_k$. We use these models to study the algebraic structure underlying such vertex theories. We show that all the $B_k$ spin vertex models obey a version of the BMW algebra along with extra relations that are called $n$--CB (conformal braiding) algebras. These algebras were discussed before for various IRF (interaction round the face) models. Here we establish that the same algebras hold for vertex models.