论文标题

$ b_k $旋转顶点模型和量子代数

$B_k$ Spin Vertex Models and Quantum Algebras

论文作者

Gepner, Doron

论文摘要

我们基于Lie代数$ B_K $的旋转表示形式构建新的可溶剂顶点模型。我们使用这些模型来研究此类顶点理论的基础代数结构。我们表明,所有$ b_k $ spin顶点模型都遵守了宝马代数的版本,以及额外的关系,称为$ n $ -cb(共形编织)代数。在面部模型周围的各种IRF(相互作用)之前,对这些代数进行了讨论。在这里,我们确定顶点模型的代数相同。

We construct new solvable vertex models based on the spin representation of the Lie algebra $B_k$. We use these models to study the algebraic structure underlying such vertex theories. We show that all the $B_k$ spin vertex models obey a version of the BMW algebra along with extra relations that are called $n$--CB (conformal braiding) algebras. These algebras were discussed before for various IRF (interaction round the face) models. Here we establish that the same algebras hold for vertex models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源