论文标题

情感脑部计算机界面:选择测量绩效度量的教程

Affective Brain-Computer Interfaces: A Tutorial to Choose Performance Measuring Metric

论文作者

Mowla, Md Rakibul, Cano, Rachael I., Dhuyvetter, Katie J., Thompson, David E.

论文摘要

情感脑部计算机界面是情感计算中相对较新的研究领域。情感状态的估计可以改善人类计算机的相互作用,并改善严重残疾人的护理。为了评估脑电图记录在识别情感状态的有效性,在这里我们使用了在实验室中收集的数据以及公开可用的DEAP数据库。我们还审查了使用DEAP数据库的文章,发现大量文章没有考虑到DEAP中类不平衡的存在。不考虑阶级不平衡会产生误导性结果。此外,忽略类失衡会使研究之间的比较结果不可能,因为不同的数据集将具有不同的类失衡。班级失衡也改变了机会水平,因此在确定结果是否高于机会的同时考虑班级偏见至关重要。为了正确地说明阶级不平衡的影响,我们建议将平衡精度用作性能指标及其后验分布来计算可靠的间隔。为了进行分类,我们使用了文献中提到的特征,并使用了theta beta-1比率。 DEAP和我们的数据的结果表明,β频段功率,theta频带功率和theta beta-1比分别是分类价,唤醒和优势的更好功能集。

Affective brain-computer interfaces are a relatively new area of research in affective computing. Estimation of affective states can improve human-computer interaction as well as improve the care of people with severe disabilities. To assess the effectiveness of EEG recordings in recognizing affective state, here we used data collected in our lab as well as the publicly available DEAP database. We also reviewed the articles that used the DEAP database and found that a significant number of articles did not consider the presence of the class imbalance in the DEAP. Failing to consider class imbalance creates misleading results. Further, ignoring class imbalance makes the comparing results between studies impossible, since different datasets will have different class imbalances. Class imbalance also shifts the chance level, hence it is vital to consider class bias while determining if the results are above chance. To properly account the effect of class imbalance, we suggest the use of balanced accuracy as a performance metric and its posterior distribution for computing credible intervals. For classification, we used features mentioned in the literature and additionally theta beta-1 ratio. Results from DEAP and our data suggest that the beta band power, theta band power, and theta beta-1 ratio are better feature sets for classifying valence, arousal, and dominance, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源