论文标题

降低模型的非线性方法

Nonlinear Methods for Model Reduction

论文作者

Bonito, Andrea, Cohen, Albert, DeVore, Ronald, Guignard, Diane, Jantsch, Peter, Petrova, Guergana

论文摘要

参数偏微分方程(PDE)的通常减少模型减少方法是构造线性空间$ v_n $,该$ v_n $均可很好地近似解决方案歧管$ \ mathcal {m} $由所有解决方案$ u(y)$组成的$ u(y)$,$ y $ y $ $ y $ the参数。然后,此线性减少的模型$ v_n $用于各种任务,例如为PDE构建在线前向求解器或从数据观察中估算参数。在数值计算的其他问题中众所周知,非线性方法,例如自适应近似,$ n $ term近似以及某些基于树的方法可能会提供提高的数值效率。为了减少模型,非线性方法将用非线性空间$σ_n$替换线性空间$ v_n $。在最近的有关模型还原的论文中已经提出了这个想法,其中参数域被分解为有限数量的单元格,并将低维线性空间分配给每个单元格。 到目前为止,对于这种非线性策略的绩效保证,知之甚少。此外,非线性模型还原的大多数数值实验仅使用一个或两个的参数维度。在这项工作中,对非线性模型还原的更加凝聚力理论迈出了一步。在库近似的一般设置中构建这些方法,使我们可以将其性能与任何一般紧凑型集合的标准线性近似的性能进行首次比较。然后,我们将这些方法转向研究,以获取参数化椭圆形PDE的溶液歧管。我们研究了一个非常具体的库近似示例,其中参数域分为有限的矩形单元$ n $ $ n $ n $,其中尺寸$ m $的不同减小的仿射空间分配给了每个单元。从近似的准确性与$ m $和$ n $的准确性的角度分析了此非线性过程的性能。

The usual approach to model reduction for parametric partial differential equations (PDEs) is to construct a linear space $V_n$ which approximates well the solution manifold $\mathcal{M}$ consisting of all solutions $u(y)$ with $y$ the vector of parameters. This linear reduced model $V_n$ is then used for various tasks such as building an online forward solver for the PDE or estimating parameters from data observations. It is well understood in other problems of numerical computation that nonlinear methods such as adaptive approximation, $n$-term approximation, and certain tree-based methods may provide improved numerical efficiency. For model reduction, a nonlinear method would replace the linear space $V_n$ by a nonlinear space $Σ_n$. This idea has already been suggested in recent papers on model reduction where the parameter domain is decomposed into a finite number of cells and a linear space of low dimension is assigned to each cell. Up to this point, little is known in terms of performance guarantees for such a nonlinear strategy. Moreover, most numerical experiments for nonlinear model reduction use a parameter dimension of only one or two. In this work, a step is made towards a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of library approximation allows us to give a first comparison of their performance with those of standard linear approximation for any general compact set. We then turn to the study these methods for solution manifolds of parametrized elliptic PDEs. We study a very specific example of library approximation where the parameter domain is split into a finite number $N$ of rectangular cells and where different reduced affine spaces of dimension $m$ are assigned to each cell. The performance of this nonlinear procedure is analyzed from the viewpoint of accuracy of approximation versus $m$ and $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源