论文标题

关于双曲线3个manifolds的自灵品种的异常亚体。

On anomalous subvarieties of holonomy varieties of hyperbolic 3-manifolds

论文作者

Jeon, BoGwang

论文摘要

让$ m $为$ n $ cusped双曲线$ 3 $ - 具有合理独立的尖端形状,$ x $是其自动化品种。我们首先表明,包含该身份的$ x $的每个最大异常亚变量都是其Codimension $ 1 $的子各种,这是通过使$ M $完整的CUSP完成的。其次,我们证明,如果$ x^{oa} = \ emptyset $,则$ m $具有cusps,使其保持其他一些尖端,使其完全隔离,与其他尖端隔离。第三,我们解决了Zilber-Pink的猜想,用于任何2美元的双曲线$ 3 $ manifolds。

Let $M$ be an $n$-cusped hyperbolic $3$-manifold having rationally independent cusp shapes and $X$ be its holonomy variety. We first show that every maximal anomalous subvariety of $X$ containing the identity is its subvariety of codimension $1$ which arises by having a cusp of $M$ complete. Second, we prove if $X^{oa} =\emptyset$ , then $M$ has cusps which are, keeping some other cusps of it complete, strongly geometrically isolated from the rest. Third, we resolve the Zilber-Pink conjecture for holonomy varieties of any $2$-cusped hyperbolic $3$-manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源