论文标题

$ g_2 $的Arthur数据包和立方体上的不正正滑轮

Arthur packets for $G_2$ and perverse sheaves on cubics

论文作者

Cunningham, Clifton, Fiori, Andrew, Zhang, Qing

论文摘要

本文开始了一个项目,即定义$ p $ addic excialution $ g_2 $的所有单位表示的Arthur数据包。在这里,我们通过使用组件组$ S_3 $定义和计算Arthur数据包来处理最有趣的情况。我们还表明,这些数据包附加的分布是稳定的,但要遵守假设。这是通过对两个变量中均匀立方体模量空间上简单的eproivariast偏斜层进行的独立的微局部分析来完成的。在即将上映的工作中,我们将处理其余的一能力表征及其内窥镜分类,并增强我们对稳定的结果。

This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also show that the distributions attached to these packets are stable, subject to a hypothesis. This is done using a self-contained microlocal analysis of simple equivariant perverse sheaves on the moduli space of homogeneous cubics in two variables. In forthcoming work we will treat the remaining unipotent representations and their endoscopic classification and strengthen our result on stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源