论文标题

主要状态及其量子亲戚

The Prime state and its quantum relatives

论文作者

García-Martín, D., Ribas, E., Carrazza, S., Latorre, J. I., Sierra, G.

论文摘要

$ n $ Qubits的主要状态,$ | \ m athbb {p} _n \ rangle $,被定义为所有计算基本状态的均匀叠加,对应于小于$ 2^n $的质子数。该状态在机械上编码量子的算术特性。我们首先表明,质量状态的量子傅立叶变换可直接访问素数分布中类似Chebyshev的偏见。下一步,我们研究$ | \ Mathbb {p} _n \ rangle $ to $ n = 30 $ Qubits的纠缠熵,并找到其缩放与无方整数密度的Shannon熵之间的关系。当使用QUDIT基础构建主要状态时,此关系也存在,表明此属性是素数分布的固有的。当考虑算术进展中素数叠加的状态时,也发现了相同的功能。最后,我们探讨了其他数字理论量子状态的属性,例如由奇数复合数,无方整数和星数定义的量子。在这项研究中,我们开发了一个开源库,该库使用任意精度的浮子对矩阵进行对角线。

The Prime state of $n$ qubits, $|\mathbb{P}_n\rangle$, is defined as the uniform superposition of all the computational-basis states corresponding to prime numbers smaller than $2^n$. This state encodes, quantum mechanically, arithmetic properties of the primes. We first show that the Quantum Fourier Transform of the Prime state provides a direct access to Chebyshev-like biases in the distribution of prime numbers. We next study the entanglement entropy of $|\mathbb{P}_n\rangle$ up to $n=30$ qubits, and find a relation between its scaling and the Shannon entropy of the density of square-free integers. This relation also holds when the Prime state is constructed using a qudit basis, showing that this property is intrinsic to the distribution of primes. The same feature is found when considering states built from the superposition of primes in arithmetic progressions. Finally, we explore the properties of other number-theoretical quantum states, such as those defined from odd composite numbers, square-free integers and starry primes. For this study, we have developed an open-source library that diagonalizes matrices using floats of arbitrary precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源