论文标题

具有量度作为初始数据和McKean-Vlasov方程的非线性Fokker-Planck方程的解决方案

Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations

论文作者

Barbu, Viorel, Röckner, Michael

论文摘要

一个人证明了非线性fokker-planck方程(fpe)\ begin \ begin {align*}&u_t-δ(β(u))+{\ mathrm {div}}(D(d div}})(d(x)b(x)b(x)= 0, x \ in \ Mathbb {r}^d,\ d \ ne2,\\&u(0,\ cdot)= u_0,\ mbox {in} \ mathbb {r}^d,\ end \ end \ end {align {align {align*} C^2(\ Mathbb {r})$是一个无折叠功能,$ b \ in C^1 $,有限,$ b \ ge0 $,$ d \ in {l^\ infty}(\ Mathbb {r}^d; l^2(\ mathbb {r}^d)+l^\ infty(\ mathbb {r}^d),$ at $ {({\ rm div} \,d)^ - } \ in L^\ infty(\ mathbb {r}^d)$,$β$,如果$ bigrantimed in l^\ infty(\ mathbb {rmathbb {rmathbb {rmathbb {rmathbb)此外,$ t \ to u(t,u_0)$是$ l^1(\ mathbb {r}^d)$中的收缩半群,它使不变的概率密度函数集中在$ \ mathbb {r}^d $中。如果$ {\ rm div} \,d \ ge0 $,$β'(r)\ ge a | r |^{α-1} $,以及$ |β(r)| \ le c r^α$,$α\ ge1,$α\ ge1,$ d \ ge3 $,然后d {d+(α-1)d}} \ | U_0 |^{\ frac2 {2+(m-1)d}},$ $ $ t> 0 $,以及,如果$ d \ in l^2(\ Mathbb {r}^d; \ m} $ \ Mathbb {r}^d $中有界度量的$ \ MATHCAL {M} _b $。结果是任意初始定律的结果,我们获得了一类McKean-Vlasov SDE的解决方案,其系数对时间边际定律具有单一的依赖性。

One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker-Planck equation (FPE) \begin{align*} &u_t-Δ(β(u))+{\mathrm{ div}}(D(x)b(u)u)=0, \quad t\geq0,\ x\in\mathbb{R}^d,\ d\ne2, \\ &u(0,\cdot)=u_0,\mbox{in }\mathbb{R}^d, \end{align*} where $u_0\in L^1(\mathbb{R}^d)$, $β\in C^2(\mathbb{R})$ is a nondecreasing function, $b\in C^1$, bounded, $b\ge0$, $D\in {L^\infty}(\mathbb{R}^d;\mathbb{R}^d)$, ${\rm div}\,D\in L^2(\mathbb{R}^d)+L^\infty(\mathbb{R}^d),$ with ${({\rm div}\, D)^-}\in L^\infty(\mathbb{R}^d)$, $β$ strictly increasing, if $b$ is not constant. Moreover, $t\to u(t,u_0)$ is a semigroup of contractions in $L^1(\mathbb{R}^d)$, which leaves invariant the set of probability density functions in $\mathbb{R}^d$. If ${\rm div}\,D\ge0$, $β'(r)\ge a|r|^{α-1}$, and $|β(r)|\le C r^α$, $α\ge1,$ $d\ge3$, then $|u(t)|_{L^\infty}\le Ct^{-\frac d{d+(α-1)d}}\ |u_0|^{\frac2{2+(m-1)d}},$ $t>0$, and, if $D\in L^2(\mathbb{R}^d;\mathbb{R}^d)$, the existence extends to initial data $u_0$ in the space $\mathcal{M}_b$ of bounded measures in $\mathbb{R}^d$. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源