论文标题
在多组分方法中结晶时中子恒星的内壳
Inner crust of a neutron star at crystallization in a multi-component approach
论文作者
论文摘要
预期中子恒星内面包中可能存在非晶态和异质相的可能存在会降低地壳的电导率,并可能对恒星的磁热演化产生重要的影响。在冷却模拟中,该疾病通过杂质参数进行量化,该参数通常被视为自由参数。我们的目标是对杂质参数的定量预测作为地壳中密度的函数,进行微观计算,包括外壳的最新微物理学。使用基于最近的微观核模型改进的能量功能的离子的可压缩液滴描述在有限温度下开发了多组分方法,并根据扩展的Thomas-Fermi计算进行了优化。通过添加重排项来确保热力学一致性,并且与线性混合规则的偏差包括在液相中。杂质参数是在结晶温度下始终计算的,如不同功能的单组分等离子体近似中所确定的。我们的计算表明,在结晶温度下,内皮的组成由核主导,电荷数约为$ z \约40 $,而$ z $分布的范围从中子滴附近的大约20个到距地壳核心过渡的约40。这反映了杂质参数的行为,在内皮的更深区域中,单调地随密度高达40个而单调地增加。我们的研究表明,杂质的贡献不可忽略,因此可能会影响中子星形外壳中的运输特性。获得的杂质参数的值表示下限;在存在非球形几何形状和/或快速冷却动力学的情况下,预期的值较大。
The possible presence of amorphous and heterogeneous phases in the inner crust of a neutron star is expected to reduce the electrical conductivity of the crust, with potentially important consequences on the magneto-thermal evolution of the star. In cooling simulations, the disorder is quantified by an impurity parameter which is often taken as a free parameter. We aim to give a quantitative prediction of the impurity parameter as a function of the density in the crust,performing microscopic calculations including up-to-date microphysics of the crust. A multi-component approach is developed at finite temperature using a compressible liquid drop description of the ions with an improved energy functional based on recent microscopic nuclear models and optimized on extended Thomas-Fermi calculations. Thermodynamic consistency is ensured by adding a rearrangement term and deviations from the linear mixing rule are included in the liquid phase. The impurity parameter is consistently calculated at the crystallization temperature as determined in the one-component plasma approximation for the different functionals. Our calculations show that at the crystallization temperature the composition of the inner crust is dominated by nuclei with charge number around $Z \approx 40$, while the range of the $Z$ distribution varies from about 20 near the neutron drip to about 40 closer to the crust-core transition. This reflects on the behavior of the impurity parameter that monotonically increases with density up to around 40 in the deeper regions of the inner crust. Our study shows that the contribution of impurities is non-negligible, thus potentially having an impact on the transport properties in the neutron-star crust. The obtained values of the impurity parameter represent a lower limit; larger values are expected in the presence of non-spherical geometries and/or fast cooling dynamics.