论文标题

显微镜图像中的无监督实例分割,通过全景域适应和任务重新加权

Unsupervised Instance Segmentation in Microscopy Images via Panoptic Domain Adaptation and Task Re-weighting

论文作者

Liu, Dongnan, Zhang, Donghao, Song, Yang, Zhang, Fan, O'Donnell, Lauren, Huang, Heng, Chen, Mei, Cai, Weidong

论文摘要

用于核实例分割的无监督域适应性(UDA)对于数字病理学很重要,因为它减轻了劳动密集型注释的负担和跨数据集的域转移的负担。在这项工作中,我们通过从荧光显微镜图像中学习,提出了一个循环一致性圆形域自适应掩模R-CNN(CYC-PDAM)结构,以在组织病理学图像中进行无监督的核分割。更具体地说,我们首先提出了一种核介绍机制,以去除合成图像中的辅助生成的对象。其次,具有域歧视器的语义分支旨在实现跨层级域的适应性。第三,为了避免源偏向特征的影响,我们提出了一种任务重新加权机制,以动态增加特定于任务损失功能的权衡权重。三个数据集的实验结果表明,我们所提出的方法的表现高于最先进的UDA方法,并且表现出与完全监督方法相似的性能。

Unsupervised domain adaptation (UDA) for nuclei instance segmentation is important for digital pathology, as it alleviates the burden of labor-intensive annotation and domain shift across datasets. In this work, we propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images, by learning from fluorescence microscopy images. More specifically, we first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images. Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation. Thirdly, in order to avoid the influence of the source-biased features, we propose a task re-weighting mechanism to dynamically add trade-off weights for the task-specific loss functions. Experimental results on three datasets indicate that our proposed method outperforms state-of-the-art UDA methods significantly, and demonstrates a similar performance as fully supervised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源