论文标题
平均速度重叠层的后期开始,在$ y^+= \ Mathcal {o}(10^3)$ - 导管湍流的通用功能
The late start of the mean velocity overlap layer at $y^+=\mathcal{O}(10^3)$ -- A generic feature of ducted turbulent flows
论文作者
论文摘要
普林斯顿超级管中的主要观察结果之一是对数平均速度重叠层的晚期开始,在$ 10^3 $内部单位的墙壁距离处。在$ y^+\大约150 $之间,重叠层以零压力梯度湍流边界层和$ y^+\ \ \ 10^3 $的开始,SuperPipe配置文件的模型是由功率定律或log law的斜率大于重叠层的斜坡。在本文中,显示出湍流平面通道流动中的平均速度曲线表现出类似的特性,即在$ y^+_ {\ mathrm {break}} \ 600 $下,对数斜率的突然下降(增加$κ$),这标志着实际重叠层的开始。该演示是由完整内部和外部渐近扩展的首次构建,直到$ \ mathcal {o}(\ Mathrm {re}_τ)^{ - 1} $从中等雷诺德的直接数值模拟(DNS)的平均速度概要文件中的平均速度概况。另一方面,对COUETTE FLOW DNS的初步分析会增加对数斜率(减少$κ$)在$ Y^+_ {\ Mathrm {break}} \大约400 $处。斜率变化的符号与流对称性之间的相关性激发了以下假设:可能的通用短内对数区域与实际重叠日志法之间的断点对应于源自相对壁的大型湍流结构的穿透深度。
One of the key observations in the Princeton Superpipe was the late start of the logarithmic mean velocity overlap layer at a wall distance of the order of $10^3$ inner units. Between $y^+\approx 150$, the start of the overlap layer in zero pressure gradient turbulent boundary layers, and $y^+\approx 10^3$, the Superpipe profile is modeled equally well by a power law or a log-law with a larger slope than in the overlap layer. In this paper it is shown that the mean velocity profile in turbulent plane channel flow exhibits analogous characteristics, namely a sudden decrease of logarithmic slope (increase of $κ$) at a $y^+_{\mathrm{break}}\approx 600$, which marks the start of the actual overlap layer. This demonstration results from the first construction of the complete inner and outer asymptotic expansions up to order $\mathcal{O}(\mathrm{Re}_τ)^{-1}$ from mean velocity profiles of direct numerical simulations (DNS) at moderate Reynolds numbers. A preliminary analysis of a Couette flow DNS, on the other hand, yields an increase of logarithmic slope (decrease of $κ$) at a $y^+_{\mathrm{break}}\approx 400$. The correlation between the sign of the slope change and the flow symmetry motivates the hypothesis that the breakpoint between the possibly universal short inner logarithmic region and the actual overlap log-law corresponds to the penetration depth of large-scale turbulent structures originating from the opposite wall.