论文标题
通过奇异理论,在矢量值范围中的Curie-Weiss-Potts模型的稳定且可稳定的阶段
Stable and metastable phases for the Curie-Weiss-Potts model in vector-valued fields via singularity theory
论文作者
论文摘要
我们研究了具有三个状态的Curie-Weiss Potts模型的亚稳态最小值,这是反向温度的函数,以及任意矢量值的外部场。扩展了Ellis/Wang和Wang的经典作品,我们使用奇异理论提供了亚稳态(或局部)最小值的全球结构。特别是,我们表明自由能具有多达四个局部最小化器(其中一些可能同时是全局),并描述其过渡的分叉几何形状,这是参数变化的。
We study the metastable minima of the Curie-Weiss Potts model with three states, as a function of the inverse temperature, and for arbitrary vector-valued external fields. Extending the classic work of Ellis/Wang and Wang we use singularity theory to provide the global structure of metastable (or local) minima. In particular, we show that the free energy has up to four local minimizers (some of which may at the same time be global) and describe the bifurcation geometry of their transitions under variation of the parameters.